Dynamic QoS-Aware Coalition Formation

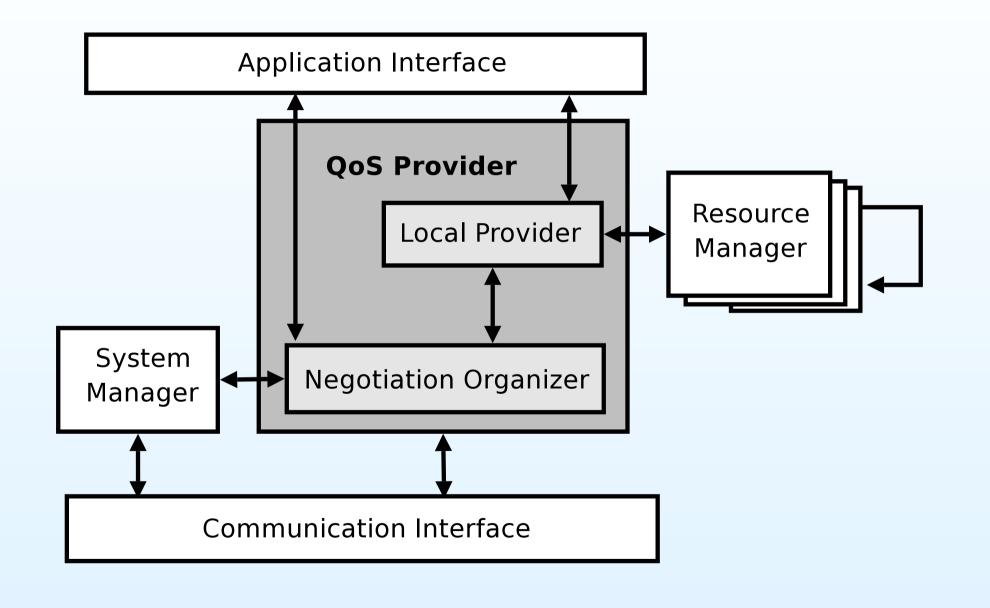
Luís Nogueira, Luís Miguel Pinho

{luis,lpinho}@dei.isep.ipp.pt

IPP-Hurray! Group School of Engineering, Polytechnic Institute of Porto Porto, Portugal

Outline

- Problem statement
- Proposed approach
- QoS requirements specification
- Coalition formation
- Proposals evaluation
- Proposals formulation
- Conclusions


Problem statement

- Heterogeneous environment
 - Resource constrained wireless devices
 - High performance neighbors
- Several work in computation offloading
 - To face heavy resource requirements in clients
- However
 - End-users do not have **real influence** on obtained QoS
 - Different users tolerate different QoS levels or combination choices
 - How to select the best neighbors according to user's QoS requirements?

Proposed approach

- User specify **spectrum** of acceptable QoS levels in **request**
 - Through semantically rich QoS specification interface
 - Relative decreasing order expresses user's preferences
- Underlying offloading mechanism splits application into taks
- Formation of temporary **coalition** for service execution
 - Neighbors cooperate with resource-constrained device
 - Taking advantage of **global** available resources
 - **Offloading** computation

Framework

QoS specifi cation interface

- QoS is often multi-dimensional
- Important to provide a semantically rich QoS specification
 - Users specify acceptable QoS levels
 - Quality tradeoff when resources are scarce

 $QoS = \{Dim, Atr, Val, DA_r, AV_r, Deps\}$

- Proposed scheme
 - **Defines** dimensions, attributes and values of a domain
 - Relations that maps
 - dimensions \rightarrow attributes
 - attributes \rightarrow values
 - Dependencies between attributes' values

Service request

- Conflict
 - $^{\circ}~$ Rich user's request \rightarrow accurate proposals' evaluation
 - User can't specify utility of every quality choice
- Impose a preference order over dimensions, attributes and values
 - Relative decreasing order expresses user's preferences
- Example:
 - 1. Video Quality
 - (a) frame rate: $\{[10 \rightarrow 5], [4 \rightarrow 1]\}$
 - (b) color depth: {3,1}
 - 2. Audio Quality
 - (a) sampling rate: 8
 - (b) sample bits: 8

Coalition formation

- Objectives
 - Enable cooperation between neighbors
 - Address increasing demands on resources and performance
 - Maximize **user's influence** on QoS provisioning
- Different groups of nodes \rightarrow different service execution performance
- **Distributed** QoS optimization algorithm
 - Evaluation of multi-dimensional proposals
 - Selection of nodes offering service closer to user's QoS preferences

Coalition formation

- 1. On the source node N_i , QoS Provider broadcasts description of each task T_i as well as user's QoS constraints Q_i
- 2. Every N_j formulates proposal and replies to N_i with proposal P_j and its local reward W_j , resulting from its proposal acceptance
- 3. QoS Provider at N_i evaluates all received proposals for each T_i and selects the own that offers the values closer to user's QoS constraints Q_i
- 4. N_i offloads each T_i to winning node(s)

Proposal's formulation in neighbor node

- Proposal's formulation centered in two principles
 - User's QoS constraints expressed in request
 - Local reward of accepting new task
- Local QoS Provider
 - Recomputes QoS levels for new set of local tasks
 - Maximizing local reward
 - May involve degrading some tasks
- Guaranteeing user's request
 - Receive service at one of requested QoS levels

Proposal's formulation in neighbor node

- Each task T_i have an associated set of user's preferences
 Presented in decreasing relative order
- Each k QoS dimensions have n possible attributes

- 1. Start by selecting the best QoS level in all k dimensions, $Q_{kj}[0]$, for the new arrived task T_a
- 2. While the new set of tasks is not schedulable
 - For each task T_i receiving service at $Q_{kj}[m] > Q_{kj}[n]$
 - $^\circ\,$ Determine the **utility decrease** resulting from degrading attribute j to m+1
 - Find task T_{min} whose decrease is minimum and degrade it to the m + 1's level

Local reward

• Degree of **global** satisfaction

$$\cdot = \begin{cases} n & \text{if task is being served at} \\ Q_{kj}[0] \text{ for all dimensions} \\ n - \sum_{j=1}^{n} penalty_j & \text{if } Q_{kj}[m] > Q_{kj}[0] \end{cases}$$

penalty is a parameter that decreases the reward value
 Increases with distance to preferred values

Proposals' evaluation in source node

- Relative decreasing order in user's request
 - Imposes preferences
- Proposals evaluated according to user's preferences

$$distance = \sum_{k=1}^{n} w_k * dist(Q_k)$$

- For each dimension *k* evaluate
 - Difference between proposed and requested values

$$dist(Q_k) = \sum_{i=1}^{attr_k} w_i * dif(Prop_{ki}, Pref_{ki})$$

Proposals' evaluation in source node

• Degree of **acceptability** of proposed value

• Compared to requested one

$$dif = \begin{cases} \frac{Prop_{ki} - Pref_{ki}}{max(Q_k) - min(Q_k)} & \text{if continuous } Q_{ki} \\ \frac{pos(Prop_{ki}) - pos(Pref_{ki})}{length(Q_k) - 1} & \text{if discrete } Q_{ki} \end{cases}$$

Conclusions

- Resource-constrained nodes may need to cooperate
 - To fulfill services at user's QoS preferred values
 - Coalition's performance is superior
- Users have different QoS requirements
 - Expressed through a semantically rich QoS specification
- Distributed service allocation
 - Multi-attribute proposals' evaluation
 - Selecting nodes offering service closer to user's preferences
- Proposals formulation for service execution
 - Local QoS optimization heuristic